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Properties of Normal Modes in a Modified Disordered
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B. Senyange, J.-J. du Plessis, B. Many Manda, and Ch. Skokos*
Department of Mathematics and Applied Mathematics,
University of Cape Town, Rondebosch, 7701 Cape Town, SOUTH AFRICA
(Received 28 November, 2019)

We introduce a modified version of the disordered Klein-Gordon lattice model, having
two parameters for controlling the disorder strength: D, which determines the range of
the coefficients of the on-site potentials, and W, which defines the strength of the nearest-
neighbor interactions. We fix W = 4 and investigate how the properties of the system’s
normal modes change as we approach its ordered version, i.e. D — 0. We show that the
probability density distribution of the normal modes’ frequencies takes a ‘U’-shaped profile
as D decreases. Furthermore, we use two quantities for estimating the modes’ spatial extent,
the so-called localization volume V' (which is related to the mode’s second moment) and
the mode’s participation number P. We show that both quantities scale as o« D~2? when
D approaches zero and we numerically verify a proportionality relation between them as

V/P =~ 2.6.
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1. Introduction

The phenomenon where energy propagation
is halted in linear disordered media was
discovered over 50 years ago by Anderson [1]
and is referred to as Anderson Localization
(AL). In recent years AL has been extensively
investigated in experimental [2-4|, numerical
and theoretical [5-8] studies. Experiments on
the observation of AL include light propagation
in spatially random optical media [3, 9], non-
interacting Bose-Einstein condensate expansions
in random optical potentials [10, 11], as well
as wave localization in a microwave -cavity
filled with randomly distributed scatterers [12].
In linear disordered systems with sufficiently
strong disorder, all normal modes (NMs)
are localized and any wave packet which is
initially localized remains in that state for
all time. On the other hand, the introduction
of nonlinearities to such systems leads to the
interaction of the NMs and the introduction of
chaos. In general two typical one-dimensional
(1D) disordered nonlinear lattices, namely the
Klein-Gordon model (DKG) and the discrete
nonlinear Schrédinger equation (DDNLS), have
been at the center of studies of the effect of
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nonlinearity on AL [6-8, 13-17]. In these works
it was found that eventually nonlinearity destroys
AL and the characteristics of different spreading
behaviors (the so-called ‘weak’ and ‘strong chaos’
regimes) were identified. The appearance of these
spreading regimes depends on the properties of
the systems’ NMs and in particular the width
A of their frequency band, the NMs’ localization
volume V', which quantifies the number of sites
where the NM has significant contribution, the
average spacing d of the modes which strongly
interact with a particular NM, and the relation
of these quantities with the frequency shift §
induced by the introduction of nonlinearity |7,
8, 14, 17]. In this work we investigate the
properties of the NMs of a 1D linear version of
the DKG lattice where two parameters determine
the model’s disorder strength: D, which is related
to the on-site potential and W, which specifies
the interaction between nearest neighbors. In
particular, we study how these properties change
when we start from a disordered version of the
system and, by changing D (while W is kept
constant), we move toward the ordered system.
We focus our attention on the spatial structure of
the modes and analyze the NMs’ frequencies, their
localization volume V' and participation number
P (which provides information about the number
of highly excited sites in the NM), along with the
changes in the frequency scales A and d of the
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system.

The paper is organized as follows. In
Section 2 we describe in detail the modified
Klein—Gordon system we consider in this study,
along with its relation to the well-known linear
disordered Schrodinger equation (LDSE). Then,
in Section 3 we present a detailed numerical
study of the properties of the system’s NMs
and their changes as D decreases, emphasizing
the distributions of the NMs’ frequencies and
some measures of their spatial extent. Finally, in
Section 4 we summarize our results and discuss
their significance.

2. The
model

In this work we perform an analysis of
the NMs of the linear disordered Klein-Gordon
(LDKG) model whose Hamiltonian function is

modified Klein—Gordon

2 2
N b; q 1 2
Hy = % [2 + 615 + W (@1 —a)” |, (1)

with ¢ and p; respectively representing the
generalized position and momentum of the
[-th oscillator in a chain of N particles.
The coefficients ¢ take uncorrelated random
values chosen from the uniform probability
distribution function P(¢) = 1/(2D) in the
interval [1 — D, 1+ D], where D is a parameter
defining the width of the disorder range, and
W > 0 determines the strength of the hopping.
In particular, we set 0 < D < 1/2
and we consider fixed boundary conditions:
qo = qN+1 = po = pn+1 = 0. We note that when
D tends to zero, Hamiltonian (1) shifts from a
disordered system toward an ordered one without
affecting the strength (1/W) of the interactions
between nearest neighbors. Setting ¢, = 1 for all
sites I = 1,...,N in (1) gives an ordered linear
model, whose nonlinear version has been studied
in [18]. The equations of motion of system (1) are

) 1
q=—|aq+ W Cy—q-1—a+1)|,. (2

where a dot denotes the derivative with respect
to time ¢. By using the ansatz q; = A;exp(iwt),
where A; is the amplitude of oscillator I,
Equation (2) leads to the eigenvalue problem

_ L

2
A
w 1 W

[(WG[ + 2)Al - Al,1 - Al+1] . (3)

The normalized eigenvectors A,;, v =1,2,..., N,

with >, A2, = 1, are the system’s NMs and

the eigenvalues w? are the corresponding squared

frequencies of these modes. The dynamics of the
nonlinear version (DKG) of system (1) obtained
by the presence of an additional nonlinear term
in the on-site potential (3°,¢}'/4) has been
extensively studied [7, 13, 15-17|, mainly in
comparison with the DDNLS model, i.e. the
nonlinear version of the LDSE

Hp = Z [&@lvil? = (Wit + Yd})] . (4)

l

where 1); is the complex wave function at site I,
the (*) denotes the complex conjugate, and ¢
is a random number drawn uniformly from an
interval symmetrically located around zero. By
setting this interval to be [-W/2,//2], with
W > 0 denoting the disorder strength, system
(4) corresponds to the standard tight-binding
(i.e. nearest-neighbor hopping) Anderson model
with disorder on the on-site potentials [1, 19].
We note that the DDNLS system studied in
[7, 13, 15-17] is obtained by the addition of the
term S)yy|*/2 in (4), with 8 > 0 quantifying the
nonlinearity strength. The NMs of system (4) can
be found by setting 1, = Aj;exp(—iAt), which
leads to the linear eigenvalue problem

M= A — A1 — A (5)

The eigenvalue problems (3) and (5), and
consequently the Hamiltonian systems (1) and
(4), become identical for

A= WW —-W -2, (6)
g = Wig-1), (7)
W = 2DW. (8)

Solving the eigenvalue problem (3) is equivalent
to diagonalizing the N x N tridiagonal matrix A
with elements

1 2
QLi-1 = L4l = g, A= 6t s, 9)

and ap; = 0 otherwise, for [,k = 1,2,...,N.
Bounds of the eigenvalues w? of A can be found
by applying the Gershgorin circle theorem [20],
which states [21] that the eigenvalues w? of
matrix A are bounded as ’wz — al,l‘ < R; —|ay;|,

1=1,2,...,N with R = >, |ayx|. The direct
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application of this theorem to matrix (9) gives
e <w? < e+4/W. Since ¢ € [1—D, 1+ D], then
the minimum (w2 ) and maximum (w? ) values

v,
of the squared frequencies are ng_ =1-—D and

w?, =1+ D+4/W. Therefore, the width of the
squared eigenfrequency spectrum is

4
A =2D+ . (10)

Setting ¢ = 1,1 =1,2,...,N in (1), i.e. D =0,
we obtain an ordered linear system, whose
eigenvalue problem can be solved analytically [22—
25| giving

(11)
We note that w2 belongs to the interval
(1,1+4/W), whose width is Ax =  in
accordance to (10). The introduction of the width
D of the disorder range in the LDKG model (1)
as an additional parameter gives us the ability
to alter the system’s disorder strength in two
distinct ways, i.e. by modifying D and/or W,
while in the equivalent LDSE system (4) we have
only one parameter, VW, to change the disorder
strength. In the investigations of the DKG (and
the LDKG) model |7, 13, 15-17| performed to
date, D was set to D = 1/2 and typically values
W > 1 were used, which also correspond through
(8) to W > 1. In that set-up, the way to study
the transition to a more ordered system is to let
W — 0, as this leads to the huge increase of the
significance of the last term of Hamiltonian (1)
(i.e. the nearest-neighbor interactions) over the
on-site potential elql2 /2 which becomes negligible.
The introduction of the parameter D allows us
to obtain this transition for the LDKG system
(1) |and equivalently for the LDSE (4) one| by
altering the on-site potentials through D — 0,
while W can be kept fixed. The properties of the
LDSE’s NMs were discussed in [26] for W 2 1 as
that work was mainly focused on strong disorder.
Equations (6)—(8) allow the direct translation of
results obtained for the LDSE (4) [19, 26] to the
case of the LDKG Hamiltonian (1). For instance,
the asymptotic spatial decay of NMs of system
(1) is given by A,; ~ exp(—|l — lp|/& ), where
lo=>, ZAEJ is the NM’s mean spatial position and
&, is the so-called localization length of mode v

[1, 19, 26|, which, using (8), is given by

24 [4— (wpW - W —2)?]
S = 4D2W? '

It is worth noting that D and W affect differently
Ak (10) and &, (12), as they do not appear in
these expressions always as a product DW. The
NMs with the largest localization length, i.e. the
most extended ones, appear at the bandwidth
center [19, 26] having

(12)

2 24
2 _ e
f(wy—1+w>—fO—Wa (13)
for W < 4.
3. Numerical results
In our analysis we set W = 4, a typical

value used in several studies |7, 13, 15-17|, and
change D from D = 1/2, which corresponds
to the D of the disordered model considered in
those papers, to values very close to D = 0
(ordered system). For this setup Equation (8)
gives W = 8D, while the width of the squared
frequency band (10) becomes Ax = 2D + 1. We
obtain numerical results by considering lattices of
lengths N = 10,000 — 50,000. For a particular
value of D € (0,0.5], we perform simulations
for ng = 100 disorder realizations in order to
statistically analyze the NMs’ properties. We
order the NMs either by increasing value of their
mean spatial position [y, or of their squared
frequency w?. As the width of the frequency band
and its boundaries change with D, we present
results according to the NM’s normalized squared
frequency

2 _wy—wi _wp+D-1 (14)
v,n AK 2D +1 ’

in order to make direct comparisons between cases
with different D values.

In Figure 1 we present the profiles,
i.e. absolute value of amplitude A, ; versus lattice
site [, of some representative NMs in logarithmic-
linear scales for various values of D. For all
cases the same disorder realization is used, whose
values are scaled appropriately to fit the interval
[l — D,1+ DJ. In all panels of Figure 1 we plot
NMs whose mean spatial position, [y, is close to
the lattice center and have approximately the
same normalized squared frequency, win ~ 0.5,
in the middle of the frequency band where the
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FIG. 1. The profile of representative NMs, whose mean
spatial position [y is at the center of the lattice and
their normalized squared frequencies are w? = 0.5

v,n

for (a) D = 0.5, (b) D = 0.3, (¢) D = 0.2 and
(d) D=0.1.

most extended NMs are [1, 19, 26|. From the
results of Figure 1 we see that all NMs are
exponentially localized, as they are characterized
by clearly defined exponential tails, but their
extent is increasing as D decreases, i.e. as system
(1) becomes less disordered, reaching an extent of
a few thousand sites for D = 0.1 [Figure 1(d)].
In Figure 2(a) we show the normalized
squared frequencies wg,n (14) of the NMs for
one disorder realization of system (1) with N =
10,000 and D = 0.1, as a function of the
NMs’ mean spatial position lp. We see that
throughout the lattice the frequencies are mainly
concentrated at the borders of the spectrum as
more points are located in the regions win ~ 0.1
and ~ 0.9. This feature becomes more evident
in Figure 2(b) where we present as a histogram
the probability density distribution d,z2 ~of the

frequencies wy,, of Figure 2(a). The maxima at
the edges of the distribution are clearly seen. The
squared frequency distribution becomes smoother
by considering results over ngy = 100 disorder
realizations for D = 0.1 |Figure 2(c)|. Here the
‘U’ shape of the distribution with equally high
peaks at the two edges is seen. From the results
of Figure 2(c) we note that the frequencies avoid
the extreme ends of the band, i.e. win ~ 0
and ~ 1, something which was also seen in
Figure 2(a) where the frequencies of only one
disorder realization were presented.

In Figure 3 we show how the probability
density distribution (over ngy = 100 disorder

%0 025 05 075 025 05 075 1
wzu.u wzv,n
FIG. 2. (a) The normalized squared frequencies win
(14) of the NMs for 1 disorder realization of system
(1) with N = 10,000 and D = 0.1, as a function of the
NMs’ mean spatial position ly. (b) The probability
density distribution dy2 of wZ, of panel (a). (c)
Similar to (b) but for ng = 100 disorder realizations.
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FIG. 3. (color online) The probability density
distributions d,2 ~ of the normalized squared

frequencies w?, (14) of system (1) for D = 05
(orange — ‘0’), D = 0.2 (red — ‘r’), D = 0.1 (green —
‘g’) and D = 0.06 (purple — ‘p’). The results of each
curve were obtained from the analysis of ngy = 100

disorder realizations.

realizations) d,2 of the win values changes with

D. In particular, we present results for D = 0.5
(orange curve), D = 0.2 (red curve), D = 0.1
(green curve) and D = 0.06 (purple curve). For
D = 0.5 the distribution has a chapeau-like shape
with somewhat higher values at the edges of the
plateau (w7, ~ 0.2 and ~ 0.8). As D decreases,
leading system (1) to a less disordered form,
the distribution develops a ‘bowl’ shape feature
at its central part, which deepens for smaller
values of D, while at the same time the peaks at
the distribution’s edges become higher and their
separation distance grows.

After discussing the characteristics of
frequencies w2, (14), let us focus on the NMs’
spatial features. Several approaches can be used
to numerically estimate the extent of NMs
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[19, 26]. Here, following [26], we consider two
main quantities for that purpose: the NMs’
localization volume V,, and their participation
number P,. In particular, we estimate the
effective distance between the exponential tails of

NMs as
v, =/ 12m$) + 1, (15)

where mg’) = >",(lo—1)?|A,|? is the NM’s second
moment. The NM’s participation number, which
measures the number of highly excited sites in the
mode, is given by

1
2l Avalt

These two quantities were found to correctly
capture the main features of the NM’s extent as
they are proportional to the average localization
length (12), which can be computed through the
transfer-matrix approach [19, 26]. Since here we
want to focus on the statistical properties of the
NMs’ spatial features, we compute V,, (15) and P,
(16) for various values of D.

In Figure 4 we plot the localization volume
V., (15) |Figure 4(a)] and the participation
number P, (16) [Figure 4(b)|] of the NMs of
nq = 100 disorder realizations of Hamiltonian (1)
with D = 0.1, as a function of the normalized
squared frequency w2, (14). In order to avoid
boundary effects we consider only modes whose
mean position [y is in the central one-third of the
lattice. The black continuous curves correspond
to running averages (V) [Figure 4(a)|] and (P)
[Figure 4(b)] of, respectively, quantities V, and
P,. In accordance to [26] and as expected
from the behavior of the localization length [see
Equations (12) and (13)] both (V) and (P)
obtain their maximum values at the center of the
frequency band, i.e. for win ~ 0.5. The existence

of a scaling relation between (V) and (P) (and
between V,, and P,), especially for the middle part
of the frequency band where the most extended
NMs are, is apparent in Figure 4, but becomes
more evident in Figure 5 where we plot the ratio
V,,/ P, versus w?,, for the results of Figure 4. The
running average of the data presented in Figure 5
(black curve) indicates that, apart from the NMs
at the edges of the frequency band, the ratio
V, /P, is close to V,,/P, =~ 2.8.

After quantifying the spatial extent of the
NMs through V,, (or equivalently through P,) we

P, (16)

1800 | @) 4 eoof ) 8

1200 - 1 p 400 :
Vy Y

600 - 1 2000 :

0 0

01 03 05 07 09
w_\),n wz\),n

FIG. 4. (a) The localization volume V, (15) and
(b) the participation number P, (16) of the NMs
of system (1) with D = 0.1 for ngy = 100 disorder
realizations, with respect to the NMs’ normalized
squared frequency w?,, (14). In both panels only NMs
whose mean position [y is in the central one-third of
the lattice extent are considered. The black curves
correspond to the running averages of the plotted
quantities, i.e. (a) (V), and (b) (P).
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Wy,

FIG. 5. The ratio V,,/ P, of the results of Figure 4 as a
function of the normalized squared frequency win of
the NMs. The black curve corresponds to the running
average of the presented data, while the horizontal
dashed line indicates the value V,,/P, = 2.8.

investigate in Figure 6 the effect of D on these
results. In particular, we present there how the
plot of (V) versus w;,, changes with respect to
D considering the cases D = 0.5 (orange curve),
D = 0.35 (turquoise curve) and D = 0.2 (red
curve) in Figure 6(a) and D = 0.1 (green curve),
D = 0.08 (blue curve) and D = 0.06 (purple
curve) in Figure 6(b). For each case the shaded
area around the (V') curve indicates one standard
deviation. In obtaining these results we consider
(as in Figures 4 and 5) NMs with mean position
in the middle one-third of the lattice. From the
results of Figure 6 we observe that both the
average value (V') and the corresponding standard
deviation increase as D decreases.

In order to better quantify the relation
between the disorder parameter D and the
average spatial extent of the NMs, we restrict
our analysis to the more extended modes of
the system by considering only NMs in the
middle one-third of the frequency band, which
at the same time (as we did so far) are located
at the central one-third of the lattice. For
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FIG. 6. (color online) The average localization volume
(V) of NMs located at the central one-third of
the lattice as a function of the normalized squared
frequency w?,, for (a) D = 0.5 (orange curve — ‘0’),
D = 0.35 (turquoise curve — ‘t’) and D = 0.2 (red
curve — ‘r’), and (b) D = 0.1 (green curve — ‘g’),
D = 0.08 (blue curve — ‘b’) and D = 0.06 (purple

(3

curve — ‘p’). The shaded area around each curve
indicates 1 standard deviation.

these modes we compute the average localization
volume (V') and participation number (P) (along
with an estimation of the uncertainties of these
quantities quantified by their standard deviation)
for ng =100 disorder realizations and present
them in Figure 7. There we clearly see the increase
of (V) and (P) when D decreases, i.e. as system
(1) approaches an ordered lattice.

From the proportionality of (V) and (P)
to the NMs’ localization length [26], as well as
from Equations (12) and (13), we expect for both
quantities to scale as o« D72. This is indeed
true as the data of (V) ((P)) in Figure 7 are
well fitted by the function a,/D? (a,/D?) with
a, = 521 £0.09 (a, = 2.01 £ 0.05) shown by
a dashed (dotted) straight line in Figure 7. This
fitting sets the ratio (V) /(P) ~ 2.6, which is quite
close to the value 2.8 obtained in Figure 5 for
one particular D value. We note that although in
Figure 7 we present results for 0.01 < D < 0.5
we use only the points with 0.02 < D < 0.5
for the fittings. We do so because the results
with very small D values (namely D = 0.01
and D = 0.015) presented in Figure 7 should
be considered with caution as the extent of the
NMs for these cases is quite large with respect
to the considered lattice size N = 50,000 and
consequently the NMs’ properties, as well as
the (V) and (P) values, might be influenced
by the presence of the boundaries. In order to
substantiate this argument we present in the inset
of Figure 7 the values of (V)/N and (P)/N
for the performed simulations. Based on these
results we decided to perform the fittings in
Figure 7 considering only data for which (P)/N <
107! in order to exclude potential influences of
the lattice boundaries to the NMs’ shapes and
properties. Let us note here that, in order to

o+
r X,

x

"
<

b} *
x

b

*t
102 101 x
10" P LK

102 101
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FIG. 7. (color online) The average, over ngy =
100 disorder realizations, localization volume (V')
(red points — ‘r’) and participation number (P) (blue
points — ‘b’) of the NMs located at the central one-
third of the lattice and in the middle one-third of
the frequency band, as a function of D. The shaded
area indicates 1 standard deviation. The straight lines
correspond to the functions (V) = a,/D? (dashed
upper curve) and (P) = a,/D? (dotted lower curve)
with a, = 5.21 and a, = 2.01. Inset: the ratio (V)/N
(upper curve) and (P)/N (lower curve) versus D,
where N is the lattice size of system (1) used for the
computation of the NMs. Both plots have logarithmic
axes.

obtain (P)/N =~ 107! for the D = 0.015 and/or
D = 0.01 cases we would need to find the
eigenvalues and the eigenvectors of matrices A (9)
with dimensions of the order of 10% x 10%, which
is an extremely hard computational task.

4. Summary and discussion

In this work we studied the properties of the
NMs of a modified 1D disordered Klein—Gordon
chain, whose disorder strength can be adjusted
through two parameters. The first, D, is directly
influencing disorder as it defines the range of the
interval from which the random coefficients of the
on-site potential are chosen, while the second, W,
defines the importance of the nearest-neighbor
interactions and in this way it is indirectly
influencing the disorder strength.

In our study we fixed W = 4 and let
D approach zero in order to investigate the
dynamical changes of the NMs when system (1)
becomes less disordered. We observed that as D
decreases the NMs become more extended and
their squared frequencies tend to cluster at the
edges of the frequency band as their distribution
develops a ‘U’-like shape. We also computed
numerically the localization volume V,, (15) and
the participation number P, (16) of the modes
for different values of D and obtained for their
average values, respectively (V') and (P), the laws
(VY oc D72 and (P) < D=2 with a scaling (V) ~
2.6(P) for D < 0.5. The DKG Hamiltonian,
i.e. the nonlinear version of Hamiltonian (1), is a
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physically relevant system as it can, for example,
model atomic arrays subject to external fields,
e.g. anharmonic lattice vibrations in crystals [27].
Thus, the introduction of the D parameter to
control its disorder, alongside W, provides us
with more flexibility in the way we can tune the
model. In particular, it allows us to influence
the system’s disorder strength either by changing
the linear part of the on-site potential (different
D values) and/or the power of the nearest-
neighbor interactions (different W values). Thus,
this separation could allow us to investigate
the effect of different physical processes on the
system’s dynamics, in ways which could also be
realized experimentally. The two scales which
will determine the wave packets’ evolution in
the presence of nonlinearity in the DKG model
are the width Ag (10) of the LDKG system’s
spectrum and the average spacing d of the squared
frequencies inside the NMs’ localization volume.
For W = 4 these quantities become

where the fitting (V) = 5.21/D? shown in
Figure 7 was used in obtaining (18). Thus,
our analysis constitutes the first step toward
understanding in more depth the influence of
disorder on the chaotic behavior of the DKG
system when D is changed, something which we
plan to address in a future publication.
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